sIimHTTP
Release v1.0-beta.002

Nov 08, 2020

Programming Guide

Installation

L1 USINZPIp . o v o o o e e e e e e e e e e e e

1.2 Clone using git o o v i i e e e e e e e e e e e e e e

1.3 Manually unpacking source Lo e e e e e e e e e

Configuration

2.1 Example configuration e e

2.2 Global configuration OPtONS« o v v vt e e e e e e e e e e e e e e e e e e
2.2.1 WED TOOU . . . e e e e e e e e e e e e e
222 0ndeX ... e e

2.3 Vhost specific configuration oL e e e e e e e e e
23,1 VhOSES . . o e e
232 module ... e e e
233 PIOXY v v o i e e e e e e e e e e e e e e e e e e e

Websockets

Basic example

REST

5.1 Methodsand headers e e e e e e
5.2 REST with Virtual HOoStS e e e e e
5.3 REST with JSON .

Virtual Hosts
6.1 Static co

ntent mode

6.2 reverse proxy mode
6.3 module mode . . .

6.3.1

Discord

Issue tracker

Entry point

W W W W

N=REN BEN EEN e e Ne We W0) |

o
-

13

15
15
16
16

19
19
20
20
21

23

25

slimHTTP, Release v1.0-beta.002

slimHTTP is a simple, minimal and flexible HTTP server.
It supports REST api routes, WebSocket' traffic and native Python imports as vhost endpoints.

Here’s a demo using minimal setup:

import slimHTTP

http = slimHTTP.server (s1limHTTP.HTTP)
http.run()

Some of the features of sSimHTTP are:

* No external dependencies or installation requirements. Runs without any external requirements or installa-
tion processes.

¢ Single threaded. slimHTTP takes advantage of select.epoll() (select.select() on Windows) to achieve blazing
speeds without threading the service. Threads are allowed and welcome, but the core code relies on using as
few threads and overhead as possible.

! WebSocket support is provided by using a @app.on_upgrade hook and parsed by a separate library, like spiderWeb

Programming Guide 1

https://scientist.cloud/
https://github.com/Torxed/spiderWeb

slimHTTP, Release v1.0-beta.002

2 Programming Guide

CHAPTER 1

Installation

Note: These instructions apply to simHTTP .

slimHTTP is a pure python library, so no special steps are required for installation. You can install it in a variety of
ways described below though for your convenience.

1.1 Using pip

’pip install slimHTTP

1.2 Clone using git

’git clone https://github.com/Torxed/slimHTTP.git

But most likely you’ll want to submodule this in a project. To do that, I would recommend not following master as it’s
actively developed. Any release/tag should be good enough for production.

cd project/dependencies
git submodule add -b v1.0 https://github.com/Torxed/slimHTTP.git

‘Which would follow the stable release branch of vI.0 where tests should be done before release.

1.3 Manually unpacking source

The source code archives (including git) include examples. Archives are available on Github:

https://git-scm.com/book/en/v2/Git-Tools-Submodules
https://github.com/Torxed/slimHTTP/releases/

slimHTTP, Release v1.0-beta.002

unzip slimHTTP-x.x.x.zip
cd slimHTTP-x.x.X
python examples/http_server.py

Chapter 1. Installation

CHAPTER 2

Configuration

Configuration is done by supplying sliimHTTP with a dict of options.
A complete example can be found under Example configuration.

Warning:

There’s startup-sensitive configuration options.
Those are addr and port to set the listening interface.

To delcare addr and port - you have to do it from the startup code:

import slimHTTP

http = slimHTTP.server (slimHTTP.HTTP, addr='127.0.0.1", port=8080)
http.run()

Trying to set it in the runtime configuration will fail, as the server has already setup the socket.bind((addr, port))

Note: All following config options are runtime friendly, they can be changed whenever during normal operation
without needing to reload the server. The format for the configuration is a valid python dict:

{
'key-one' : 'value',
'key—-two' : 'value'

Where the key is any of the below options, and the value is whatever corresponds to that particular key or option.

slimHTTP, Release v1.0-beta.002

2.1 Example configuration

import slimHTTP
http = slimHTTP.server (slimHTTP.HTTP)

@http.configuration
def config(instance):

return {
'web_root' : './vhosts/default',
'index' : 'index.html',
'vhosts' : {
'hvornum.se' : {
'web_root' : './vhosts/hvornum.se',
'index' : 'index.html'
}I
'slimhttp.hvornum.se' : {
'module' : './vhosts/internal_tests/vhost.py'
}
}
}
http.run ()

Here, configuration changes after the server has finished starting up.
The same configuration could be given on startup, but is not mandatory.

The configuration changes the default web-root as well as some minor changes
to vhost specific resources.

2.2 Global configuration options

Below follows some of the configuration options that are available at all configuration levels.
These can there for be set in vhost scope as well as the base/global scope.

2.2.1 web_root

As all other variables, Web roots can be configured in the global and vhost scope.
The paths them selves can be relative or absolute, they will be resolved in runtime.

{'web_root' : './path'}

2.2.2 index

index can be either a single st of a filename, or
it can be a list of files in which slimHTTP will try them in cronological order.

6 Chapter 2. Configuration

slimHTTP, Release v1.0-beta.002

’{'index' : ['index.html', 'main.py'l}

2.3 Vhost specific configuration

2.3.1 vhosts

vhosts key should be placed in the base configuration and be directly followed by a key representing the name of the
domain (FQDN) that simHTTP should react to.

And the value should be a dict containing any valid slimHTTP configuration.
For instance, for the FODN https://slimhttp.hvornum.se/ the config would be:

'vhosts' : {
'slimhttp.hvornum.se' : {
// config options for slimhttp.hvornum.se

}

Where the configuration specifics for that domain would be placed instead of the “comment”.
for instance ‘index’ : ‘index.html’ could be added.

2.3.2 module

Note:

module mode is also activated when a client requests a URL that ends with .py.

The module is a key which can tell simHTTP that instead of using reverse proxy mode or a normal look for a index
mode.
slimHTTP should import the script in question, and return the data given by that module. Here’s an example:

'vhosts' : {
'slimhttp.hvornum.se' : {
'module' : './vhosts/hvornum.se/vhost_slimhttp.py'

}

The exact structure of the module can be anything.
But there are two main entry functions slimHTTP will look for.

2.3. Vhost specific configuration 7

https://slimhttp.hvornum.se/

slimHTTP, Release v1.0-beta.002

Warning:

The module is reloaded each request.
This means that persistant data or information has to be stored away on each request.

To use a in-memory storage, you could altho not recommended, use something like this in vhost_slimhttp.py from
the above example.

if not 'MyMemStorage' in __builtins__: __builtins__ ['MyMemStorage'] = {}

if not 'counter' in MyMemStorage: MyMemStorage['counter'] = 0

print (f"The module ran with counter value {MyMemStorage['counter'] /. Incremeting,
—value!"")

MyMemStorage (['counter'] += 1

Or you could use pickle.dumps or a database to store the data you need between sessions. Although they will be a
bit slower considering they’re not working within the application memory space.

on_request

if the function on_request is defined (using ‘hasattr(‘on_request’, <module>)*), sSimHTTP will automatically call it
upon each request to that vhost.

Warning: if @app.route(/...’, vhost="example.com’) is defined, that will take precedence over the on_request
if on_request returns data. Otherwise the @app.route will be a fallback.

@app.route

It’s possible to set up vhost specific routes. These acts as normal REST -like endpoints.
The key difference is that @app.route takes a additional keyword, vhost=:str. And to access it,
you need to get the current server instance so you can decorate it.

import slimHTTP
http = slimHTTP.instances[':80"]
@http.route('/', vhost='example.com")

def route_handler (request) .
print (request)

This will server / but only for the given vhost.
And this could serve as a entry-point for vhost specific modules.

Note: Note that the instance depends on the addr and port used, a “listening on every interface on port 80” would
be :80 in this case.

8 Chapter 2. Configuration

https://docs.python.org/3/library/pickle.html#pickle.dumps

slimHTTP, Release v1.0-beta.002

2.3.3 proxy

Reverse proxy support can be enabled in any vhost.
The reverse proxy will kick in once a valid HTTP header with the Host: <host> field defined.
Upon which slimHTTP will switch from a HTTP_REQUEST to a HTTP_PROXY_REQUEST.

Warning: The HTTP_REQUEST object has two pitfalls. One, if the proxy is slow to respond all concurrent HTTP
requests to slimHTTP will become slow, since we’re single threaded, it means that the proxy response has to be
parsed in full before other requests can come in. The second pitfall being Issue #11.

'vhosts' : {
'internal.hvornum.se' : {
'proxy' : '192.168.10.10:80",
'ssl' : False

Here, http://internal.hvornum.se requests are proxied down to 192.168.10.10 on port 80.

Note: The ‘ssl’ : False’ is optional and the default behavior.

2.3. Vhost specific configuration 9

https://github.com/Torxed/slimHTTP/issues/11

slimHTTP, Release v1.0-beta.002

10 Chapter 2. Configuration

CHAPTER 3

Websockets

WebSockets are supported by slimHTTP, but enabled by a plugin.

You’ll need to install slimWS one way or another.
After that, simply plug in the upgrader to sSlimHTTP:

import slimHTTP
import slimWS

http = slimHTTP.host (s1imHTTP.HTTP)
websocket = spiderWeb.WebSocket ()

@http.on_upgrade
def upgrade (request) :

new_identity = websocket .WS_CLIENT_IDENTITY (request)
new_identity.upgrade (request) # Sends Upgrade request to client

return new_identity

http.run()

Note: slimWS has a rudimentary API support, which can be viewed on the slimWS documentation.

The following example will catch any Connection: upgrade request,

and then proceed to in-memory replace the HTTP_CLIENT_IDENTITY with a slimWS.WS_CLIENT_IDENTITY.

Identities are usually one-shot-sessions, but since WebSockets in general are a session based connection, the
slimWS.WS_CLIENT_IDENTITY persists over requests - as there are no socket.close() event for that protocol.
slimHTTP honors the keep-alive in the identity and doesn’t touch the socket after each response.

11

https://slimws.readthedocs.io/en/latest/
https://slimws.readthedocs.io/en/latest/
https://en.wikipedia.org/wiki/HTTP/1.1_Upgrade_header
https://slimws.readthedocs.io/en/latest/
https://slimws.readthedocs.io/en/latest/

slimHTTP, Release v1.0-beta.002

12 Chapter 3. Websockets

CHAPTER 4

Basic example

As shown in the overview on GitHub, the most basic example would be:

import slimHTTP

http = slimHTTP.host (s1imHTTP.HTTP)
http.run()

Which uses the .. _config.default: configuration.

13

slimHTTP, Release v1.0-beta.002

14 Chapter 4. Basic example

CHAPTER B

REST

By leveraging @app.route we can setup mock endpoints.
These endpoints will get one parameter, the HTTP_REQUEST object.

Warning: The following example is for non-vhost entries. This is useful for simpel setups. Read below for a
REST Vhost option.

@http.route('/")
def main_entry (request) :
print (request.headers)

return request.build_headers () + b'<html><body>Test body</body></html>

This is a minimal example of how to respond with some default basic headers and a default content.

5.1 Methods and headers

Unlike many other frameworks, slimHTTP does not currently support method="POST" filtering
in the @http.route functionality. Instead, the method is given or found in request.method
in each request object (or for the raw request data, also in ‘request.headers[b” METHOD” |*).

An example to react to PUT requests:

@http.route('/")
def main_entry (request) :
if request.method == 'PUT':
print ('We got a PUT request with headers:', request.headers)

15

slimHTTP, Release v1.0-beta.002

5.2 REST with Virtual Hosts

When creating virtual hosts in your configuration, the router needs to know
that you want to insert a route to a specific virtual host. Which can be done
by doing the following:

Warning: You first need to grab the http instance object, since virtual host entry-points are usually defined in a
separate file from where the hrtp variable was created.

This example also shows you how to grab that instance.

import slimHTTP

http = slimHTTP.instances|[':80"]
@http.route('/', vhost='example.com")
def main_entry (request) :

print (request.headers)

return request.build_headers () + b'<html><body>Test body</body></html>

This example will not trigger on the default hosted site, but instead only trigger
on the web-root of example.com in this example.

5.3 REST with JSON

By default, slimHTTP will #ry to parse incoming data labled with Content-Type: application/json as JISON.
But ultimately it’s up to the developer to verify.

To convert and work with the request data, you could do something along the lines of:

@http.route('/")

def main_entry (request) :
data = json.loads (request.payload.decode ('UTE-8"))
print (data['key'])

And to respond, you could build ontop of it by doing:

@http.route('/")

def main_entry(request) :
data = json.loads (request.payload.decode ('UTE-8"))
print (data['key'])

return request.build_headers ({'Content-Type' : 'application/json'}) + bytes(Json.
—dumps ({"key" : "a value"}, 'UTF-8")

Which would instruct slimHTTP to build a basic header response with one additional header, the Content-Type and
utilize json.dumps to dump a dictionary structure.

16 Chapter 5. REST

https://docs.python.org/3/library/json.html#json.dumps

slimHTTP, Release v1.0-beta.002

Note:

But a more future proof way would be to use the ~slimHTTP.HTTP_RESPONSE object as a return value.
This enables you to avoid building the headers yourself as well as concatinate the payload and format it.

5.3. REST with JSON 17

slimHTTP, Release v1.0-beta.002

18 Chapter 5. REST

CHAPTER O

Virtual Hosts

Note: SNI is Currently, as of v1.0.1rc3, not supported

slimHTTP supports working with hosts.
The vhosts have three different modes, which we’ll try to explain here.

6.1 Static content mode

Normal operation mode for simHTTP is to statically deliver anything under web_root using index whenever
directory listing is attempted.

This mode is there for the default unless no other mode is specified, and thus one configuration option is required,
and that is _web_root.

import slimHTTP
http = slimHTTP.server (s1limHTTP.HTTP)
@http.configuration

def config(instance):
return {

'vhosts' : {
'slimhttp.hvornum.se' : {
'web_root' : './vhosts/hvornum.se'

}

19

https://en.wikipedia.org/wiki/Server_Name_Indication

slimHTTP, Release v1.0-beta.002

This will deliver anything under ./vhosts/hvornum.se and jail all requests to that folder'.

6.2 reverse proxy mode

To configure a reverse proxy, the proxy definitions must consist of two things,
an addr and a port in the format: “addr:port”.
A simple example would be:

import slimHTTP
http = slimHTTP.server (slimHTTP.HTTP)

@http.configuration
def config(instance) :
return {
'vhosts' : {
'internal.hvornum.se' : {
'proxy' : '192.168.10.10:80"

Which will allow outside clients to connect to a internal resource on the 7192.168.10.10 1P, via simHTTP.

Note: There’s an optional flag to proxy definitions, which can be seen under _modules.

6.3 module mode

The module is a special python import mechanic.
It supports absolute or relative paths to a module.
The module itself will be import <module> imported with a bit of trickery.

Some more information regarding module entry points can be found under _modules.
But to specify a vhost as a module, simply configure the following:

import slimHTTP
http = slimHTTP.server (slimHTTP.HTTP)

@http.configuration
def config(instance):

(continues on next page)

! Security issues aside.

20 Chapter 6. Virtual Hosts

slimHTTP, Release v1.0-beta.002

(continued from previous page)

return {

'vhosts' : {
'slimhttp.hvornum.se' : {
'module' : './vhosts/hvornum.se/vhost_slimhttp.py'

Note:

module mode is also activated when a client requests a URL that ends with .py.

6.3.1 Entry point

There’s no requirements on the module itself.

It can be any valid Python code and it will be executed as if someone did import module. However, there are a
optional entry point.

def on_request (request) .
print (request)

on_request will be called if it’s defined, otherwise it won’t.
To access current service instances for decorators, simply import slimHTTP and access the ~slimHTTP.instances.

import slimHTTP
print (s1limHTTP.instances)

http = slimHTTP.instances[':80"]
@http.route('/', vhost='example.com")

def handler (request) :
print (request)

Warning: Just make sure you define a vhost=.. ., otherwise you’ll replace the default context handler.

6.3. module mode 21

slimHTTP, Release v1.0-beta.002

22 Chapter 6. Virtual Hosts

CHAPTER /

Discord

There’s a discord channel which is frequent by the contributors.

To join the server, head over to discord.com/slimHTTP and join in. There’s not many rules other than common sense
and treat others with respect.

There’s the @ Party Animals role if you want notifications of new releases which is posted in the #Release Party
channel. Another thing is the @ Contributors role which you can get by writing /verify and verify that you're a
contributor.

Hop in, I hope to see you there! :)

23

https://github.com/Torxed/slimHTTP/graphs/contributors
https://discord.gg/CMjZbwR

slimHTTP, Release v1.0-beta.002

24 Chapter 7. Discord

CHAPTER 8

Issue tracker

Issues whould be reported over at GitHub/issues.

General questions, enhancements and security issues can be reported over there too. For quick issues or if you need
help, head over the to the Discord.

25

https://github.com/Torxed/slimHTTP/issues

	Installation
	Using pip
	Clone using git
	Manually unpacking source

	Configuration
	Example configuration
	Global configuration options
	web_root
	index

	Vhost specific configuration
	vhosts
	module
	proxy

	Websockets
	Basic example
	REST
	Methods and headers
	REST with Virtual Hosts
	REST with JSON

	Virtual Hosts
	Static content mode
	reverse proxy mode
	module mode
	Entry point

	Discord
	Issue tracker

